矩陣

語出testwiki
跳至導覽 跳至搜尋

模板:當代數學

夫縱橫之陣,填格以數,以括括之,是為矩陣,西記之以

矩陣之形,蓋出於表格。古以表格之數,作成陣列,簡寫之,是為矩陣。其本無義,義依於其內之數。後而有曰,矩陣自可為一物,為人所究,是以矩陣之學展。

  • 者,曰「階矩陣」,其交以橫「列」及直「行」。行列之數等者,曰「方陣」。其各位之數曰「元素」,記曰「」,曰「第元」。
  • 兩矩陣,使階數同等,各元對應相等,曰兩矩陣「相等」,記曰「」。
  • 凡階數同等者,可以相加減之,其法以同位之元加減。
  • 矩陣可乘以係數,其各元分乘。

斯於線性代數向量幾何統計皆有其大用。以矩陣述向量分量,可以化代數歐氏幾何為一;以述機率可以計人、物、機率之移化。

方程式

增廣矩陣,並列運算,可以之解直線方程

例曰:方程組,可以示之,列運算得,則解

線性變換

座標中,立點,示以矩陣,前乘二階方陣,其果矩陣,視之新點,謂點P以A變換至P'。

形以方陣變換者,其面積比如方陣行列式值。有方陣,特有其能,可為伸縮、鏡射旋轉之法。

模板:Stub