模板:當代數學
夫縱橫之陣,填格以數,以括括之,是為矩陣,西記之以
。
源
矩陣之形,蓋出於表格。古以表格之數,作成陣列,簡寫之,是為矩陣。其本無義,義依於其內之數。後而有曰,矩陣自可為一物,為人所究,是以矩陣之學展。
性
- 形
者,曰「
階矩陣」,其交以
橫「列」及
直「行」。行列之數等者,曰「方陣」。其各位之數曰「元素」,記曰「
」,曰「第
元」。
- 兩矩陣
、
,使階數同等,各元對應相等,曰兩矩陣「相等」,記曰「
」。
- 凡階數同等者,可以相加減之,其法以同位之元加減。
- 矩陣可乘以係數,其各元分乘。
用
斯於線性代數、向量、幾何、統計皆有其大用。以矩陣述向量分量,可以化代數、歐氏幾何為一;以述機率可以計人、物、機率之移化。
方程式
作增廣矩陣,並列運算,可以之解直線方程。
例曰:方程組
,可以
示之,列運算得
,則解
。
線性變換
座標中,立點
,示以矩陣
,前乘二階方陣
,其果矩陣
,視之新點
,謂點P以A變換至P'。
形以方陣變換者,其面積比如方陣行列式值。有方陣,特有其能,可為伸縮、鏡射、旋轉之法。
模板:Stub